

Wind Dispatch Using Do-not-Exceed Limit

FERC Technical Conference on Increasing Market and Planning Efficiency Through Improved Software

June 23, 2014

Tongxin Zheng, Eugene Litvinov, and Jinye Zhao

BUSINESS ARCHITECTURE AND TECHNOLOGY

Outline

- Motivation
- Current Practice and Issues
- The Proposed Wind Dispatch Process
- DNE Problem and Solution Method
- Numerical Example
- Conclusion

Motivation

- More wind resources are being integrated into the system operation.
- Different from conventional generators, wind resources are
 - Variable
 - Increased level of uncertainty in the real-time operation
 - Non-dispatchable
 - Wind generation can be only curtailed when reliability issues arise
 - Low operating cost
 - Negative marginal cost
- How do we better utilize the low cost wind resources recognizing their variability?

Existing Real-time Wind Dispatch Practice

Manual Dispatch

- Fixed at SCADA values
- Do not set real-time prices
- Curtailment through phone calls in the event of transmission violation
- No enforcement of performance penalty

Automatic Dispatch

- Expected output forecasted by the system operator or participants
- Dispatch between 0 and the expected output
- Utilize economic offers in the dispatch and pricing
- Automatic curtailment as long as basepoint < expected output
- Electronic dispatch with basepoint and/or curtailment flag
- Allow a wider deviation range when no curtailment is activated

Issues with Existing Practice

- The dispatch signal does not provide a clear guideline of dispatch following for wind resources.
 - They do not know whether additional wind generation beyond the basepoint will cause any reliability problem.
- The curtailment action is ex post and may not be efficient.
 - Manual Curtailment
 - Is implemented when system already experiencing security problem.
 - Automatic Curtailment
 - Does not differentiate economic-based from reliabilitybased curtailments

The Proposal: Do not Exceed (DNE) Limit

- Send a do-not-exceed limit to each wind unit
 - Do-not-exceed limit = Reliability limit
- The DNE limit is the maximum amount of wind generation that system can accommodate without causing any reliability issues.
 - Reliability: Capacity and Transmission
 - Uncertainty: Any realization
- Benefits of DNE limit:
 - Provide a dispatch guideline for wind resources
 - Provide incentives for dispatch following
 - Units exceeding their DNE limits are subject to penalty
 - Allow low cost wind resource to provide as much energy as possible

Real-time Wind Dispatch Framework

CA – Contingency Analysis

ED - Electronic Dispatch System

DDP – Desired Dispatch Point

DNF - Do-not-Exceed Limit

Wind CA

- N-1 Contingency Analysis
 - Loss of line
 - Loss of generator

- Enhancement with wind dispatch
 - Security under expected wind generation
 - Contingency analysis with expected wind output scenario
 - Constraints are generated for the economic dispatch
 - Security under extreme wind realization
 - Zonal basis
 - Loss of wind resource
 - Extreme wind generation
 - Constraints are generated for the DNE limit calculation

Real-time Dispatch

- Market participants submit
 - Real-time high operating limit
 - Generation forecast
 - Meteorology data
 - Outage information

- ISO forecasts the expected output of each wind resource.
- In the dispatch, each wind unit is
 - Dispatchable (allowed for price setting)
 - Dispatched between 0 and its expected output level
 - Dispatched against its energy offer

DNE Limit Calculation

- Produce the reliability limit for each wind resources by taking account system control actions.
- DNE Limit Problem Formulation
 - An optimization problem to find the minimum and maximum output level of a wind resource while satisfying the following conditions:
 - System is able to maintain energy balance under any output variation of wind resources by adopting a set of control actions,
 - The flow on any transmission line remains within its limit under any realization of uncertain output level of wind resources,
 - The corrective control action must be subject to its corresponding physical limits,
 - The output variation of a wind resource should be within its physical limits.

10

Not a Standard Robust Optimization Problem

A standard two-stage robust optimization problem:

$$\min_{x,p(\bullet)} \left(c^T x + \max_{w \in [w^{LB}, w^{UB}]} g(p(w)) \right)$$
s.t.
$$Ax + Bp(w) + Dw \le h, \forall w \in [w^{LB}, w^{UB}]$$

$$x \in X$$

- Determine the best control decision x to accommodate the worst case
- The uncertainty set is pre-defined
- DNE limit problem:

$$\min_{p(\bullet),w^{LB},w^{UB}} f(w^{LB},w^{UB})$$
s.t.
$$Ax^* + Bp(w) + Dw \le h, \forall w \in [w^{LB},w^{UB}]$$

$$(w^{LB},w^{UB}) \in \mathcal{U}$$

- Determine the largest uncertainty range that a system can accommodate
- The uncertainty set is to be determined

Solution Strategies

- The DNE Limit problem can be considered as a reverse of an adaptive robust optimization problem, which is difficult to solve in general.
- Approximation can be made to the adaptive/corrective actions to reduce the complexity of the solution method.
- Three approximation strategies
 - Affine policy with fixed participation factor
 - Affine policy with optimal participation factor
 - Fully adaptive strategy

Affine Policy

 Assume that the output of a corrective action unit changes linearly with respect to the uncertainty realization

$$p_{j}(w) = p_{j}^{*} + E_{j} \cdot (w - w^{*})$$
Participation vector

Substitution and Dualize the robust constraint

$$\min_{\substack{p(\bullet), w^{LB}, w^{UB} \\ \text{s.t.} \quad Ax^* + Bp(w) + Dw \le h, \forall w \in [w^{LB}, w^{UB}] \\ (w^{LB}, w^{UB}) \in \mathcal{W}}} \prod_{\substack{w^{LB}, w^{UB}, E, \alpha \\ \text{s.t.} \quad (Ax^* + Bp^* - BEw^*) + \alpha^{+T}w^{UB} - \alpha^{-T}w^{LB} \le h}}$$

$$\alpha^+ - \alpha^- = (D - BE)^T \\
(w^{LB}, w^{UB}) \in \mathcal{W}$$

Affine Policy

- Affine policy with fixed participation factors
 - The participation vector E can be fixed based on engineering experience.
 - $-\alpha^{-}$ and α^{+} can be predetermined

$$\left\{\alpha^{-}\right\}_{j,k} = \min(\left(D - BE\right)_{j,k}, 0) \qquad \left\{\alpha^{+}\right\}_{j,k} = \max(\left(D - BE\right)_{j,k}, 0)$$

- The corresponding problem is an LP problem
- Affine policy with optimal participation factors
 - Paticipation vector E is a decision variable
 - $-\alpha^{-}$ and α^{+} are variables too
 - DNE problem is a bilinear problem

Fully Adaptive Strategy

• For any w_k in the interval $[w_k^{LB}, w_k^{UB}]$, it can be expressed as follows:

$$W_k = z_k w_k^{LB} + (1 - z_k) w_k^{UB}, \forall z_k \in [0,1]$$

Reformulation: two-stage adaptive robust optimization problem

$$\min_{p(\bullet),w^{LB},w^{UB}} f(w^{LB},w^{UB})
\text{s.t.} Ax^* + Bp(w) + Dw \le h, \forall w \in [w^{LB},w^{UB}]
(w^{LB},w^{UB}) \in \mathcal{U}$$
+ $w = Zw^{LB} + (I-Z)w^{UB}, Z \in [0,I]$

$$\min_{p(\bullet), w^{LB}, w^{UB}} f(w^{LB}, w^{UB})$$
s.t.
$$Ax^* + Bp(z) + DZw^{LB} + D(I - Z)w^{UB} \le h, \forall Z \in [0, I]$$

$$(w^{LB}, w^{UB}) \in \mathcal{U}$$

Comparison of Three Solution Strategies

5-Bus Examples

Generator Information

Resources	Туре	Location	Bid	Dispatch Min	Dispatch Max	Physical	Physical
			(\$/MWh)	(MW)	(MW)	Min (MW)	Max (MW)
Gen0	Wind	Bus0	0	0	80	0	150
Gen1	AGC	Bus1	10	40	100	0	100
Gen2	Conventional	Bus2	15	50	100		
Gen3	Wind	Bus3	0	0	100	0	150
Gen4	AGC	Bus4	20	120	150	0	150
Load1	Fixed	Bus1		50	50		
Load2	Fixed	Bus2		100	100		
Load3	Fixed	Bus3		60	60		
Load4	Fixed	Bus4		200	200		

 Only AGC units are assumed to perform corrective control in the example.

5-Bus Example: Dispatch Solution

Transmission flow limit for each line is 100 MW.

5-Bus Example: DNE Limits

Approaches	Gen0 (DNE Limit)	Gen1 (e)	Gen2 (DDP)	Gen3 (DNE Limit)	Gen4 (e)	Total Range of DNE Limit
Affine (fixed e)	[58.3~100]	0.4	50 MW	[71.7~113.3]	0.6	83.3 MW
Affine (optimal e)	[24~100]	0.714	50 MW	[100~150]	0.286	126 MW
Fully adaptive	[80~100]	N/A	50 MW	[30~150]	N/A	140 MW

- Fully adaptive approach results in the largest total DNE limit range
- Affine policy approach with fixed participation factor results in the smallest total DNE limit range
- The fixed participation factor can be very different from the optimal counterpart.

ISO New England System Example

- Jun 1st , 2011 Data
 - 6 wind generators with total capacity of 250 MW
 - 1~3 AGC units with regulation capability of 20~140 MW

- Two affine approaches yield the same results
- The advantage of the adaptive approach is not significant

Conclusion

- A wind dispatch framework using the DNE limit is proposed.
- The proposed dispatch framework
 - Provides a more clear dispatch guideline for wind resources
 - Provides better incentives for dispatch following
 - Accommodates more low cost wind generation
- A systematic way of determining the DNE limits for wind power resources is proposed based on the robust optimization technique.
- Three solution strategies are investigated.
 - The fixed participation factor affine policy approach is more suitable for the real-time operation.

Questions

